hypot, cabs, fabs - Calculate Euclidean distance and absolute
value
#include <math.h>
double hypot(
double x,
double y ); float hypotf(
float x,
float y ); long double hypotl(
long double x,
long double y ); double cabs(
double x,
double y ); float cabsf(
float x,
float y ); long double cabsl(
long double x,
long double y ); double fabs(
double x ); float fabsf(
float x ); long double fabsl(
long double x );
Math Library (libm)
Interfaces documented on this reference page conform to
industry standards as follows:
hypot(): XPG4
fabs(): XPG4
Refer to the standards(5) reference page for more information
about industry standards and associated tags.
The hypot(), hypotf(), and hypotl() functions compute the
length of the hypotenuse of a right triangle, where x and
y represent the perpendicular sides of the triangle. The
hypot(x,y), hypotf(x,y) and hypotl(x,y) functions are
defined as sqrt(x**2 + y**2).
The cabs(), cabsf(), and cabsl() functions return the complex
absolute value of x. The cabs(), cabsf(), and cabsfl)
functions are defined as hypot() and hypotf(), respectively.
The fabs(), fabsf(), and fabsl() functions compute the
absolute value of x.
The following table describes function behavior in
response to exceptional arguments:
----------------------------------------------------------------------------
Function Exceptional Argument Routine
Behavior
----------------------------------------------------------------------------
hypot(), hypotf(), hypotl() sqrt(x**2 + y**2)>max_float Overflow
cabs(), cabsf(), cabsl() sqrt(x**2 + y**2)>max_float Overflow
----------------------------------------------------------------------------
The following table lists boundary values used by these
functions:
-----------------------------------------------------------------
Value Name Data Type Hexadecimal Value Decimal Value
-----------------------------------------------------------------
max_float S_FLOAT 7F7FFFFF 3.402823e38
T_FLOAT 7FEFFFFFFFFFFFFF 1.7976931348623e308
-----------------------------------------------------------------
hypot(3)
[ Back ] |