·  Home
+   man pages
 -> Linux -> FreeBSD -> OpenBSD -> NetBSD -> Tru64 Unix -> HP-UX 11i -> IRIX
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

man pages->IRIX man pages -> complib/RGG (3)
 Title
 Content
 Arch
 Section All Sections 1 - General Commands 2 - System Calls 3 - Subroutines 4 - Special Files 5 - File Formats 6 - Games 7 - Macros and Conventions 8 - Maintenance Commands 9 - Kernel Interface n - New Commands

### Contents

```
_RGG(3F)							      _RGG(3F)

```

### NAME[Toc][Back]

```     RGG, SRGG	-  EISPACK routine.  This subroutine calls the recommended
sequence of subroutines from the eigensystem subroutine package (EISPACK)
to	find the eigenvalues and eigenvectors (if desired) for the REAL
GENERAL GENERALIZED eigenproblem  Ax = (LAMBDA)Bx.

```

### SYNOPSYS[Toc][Back]

```	  subroutine  rgg(nm, n, a, b, alfr, alfi, beta, matz, z, ierr)
integer	   nm, n, matz,	ierr
double precision a(nm,n),b(nm,n),alfr(n),alfi(n),beta(n),z(nm,n)

subroutine srgg(nm, n, a, b, alfr, alfi, beta, matz, z, ierr)
integer	   nm, n, matz,	ierr
real		   a(nm,n),b(nm,n),alfr(n),alfi(n),beta(n),z(nm,n)

```

### DESCRIPTION[Toc][Back]

```     On	Input

NM	must be	set to the row dimension of the	two-dimensional	array
parameters	as declared in the calling program dimension statement.

N is the order of the matrices  A	and  B.

A contains	a real general matrix.

B contains	a real general matrix.

MATZ is an	integer	variable set equal to zero if only eigenvalues are
desired.  Otherwise it is set to any non-zero integer for both
eigenvalues and eigenvectors.  On Output

ALFR and  ALFI  contain the real and imaginary parts, respectively, of
the numerators of the eigenvalues.

BETA contains the denominators of the eigenvalues,	which are thus given
by	the ratios  (ALFR+I*ALFI)/BETA.	 Complex conjugate pairs of
eigenvalues appear	consecutively with the eigenvalue having the positive
imaginary part first.

Z contains	the real and imaginary parts of	the eigenvectors if MATZ is
not zero.	If the J-th eigenvalue is real,	the J-th column	of  Z
contains its eigenvector.	If the J-th eigenvalue is complex with
positive imaginary	part, the J-th and (J+1)-th columns of	Z  contain the
real and imaginary	parts of its eigenvector.  The conjugate of this
vector is the eigenvector for the conjugate eigenvalue.

IERR is an	integer	output variable	set equal to an	error completion code
described in section 2B of	the documentation.  The	normal completion code
is	zero.  Questions and comments should be	directed to B. S. Garbow,

Page 1

_RGG(3F)							      _RGG(3F)

APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

PPPPaaaaggggeeee 2222```
[ Back ]
Similar pages