*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dptrfs (3)              
Title
Content
Arch
Section
 

Contents


DPTRFS(3F)							    DPTRFS(3F)


NAME    [Toc]    [Back]

     DPTRFS - improve the computed solution to a system	of linear equations
     when the coefficient matrix is symmetric positive definite	and
     tridiagonal, and provides error bounds and	backward error estimates for
     the solution

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DPTRFS(	N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
			WORK, INFO )

	 INTEGER	INFO, LDB, LDX,	N, NRHS

	 DOUBLE		PRECISION B( LDB, * ), BERR( * ), D( * ), DF( *	), E(
			* ), EF( * ), FERR( * ), WORK( * ), X( LDX, * )

PURPOSE    [Toc]    [Back]

     DPTRFS improves the computed solution to a	system of linear equations
     when the coefficient matrix is symmetric positive definite	and
     tridiagonal, and provides error bounds and	backward error estimates for
     the solution.

ARGUMENTS    [Toc]    [Back]

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrix	B.  NRHS >= 0.

     D	     (input) DOUBLE PRECISION array, dimension (N)
	     The n diagonal elements of	the tridiagonal	matrix A.

     E	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) subdiagonal elements of the tridiagonal matrix A.

     DF	     (input) DOUBLE PRECISION array, dimension (N)
	     The n diagonal elements of	the diagonal matrix D from the
	     factorization computed by DPTTRF.

     EF	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) subdiagonal elements of the unit	bidiagonal factor L
	     from the factorization computed by	DPTTRF.

     B	     (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
	     The right hand side matrix	B.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).






									Page 1






DPTRFS(3F)							    DPTRFS(3F)



     X	     (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
	     On	entry, the solution matrix X, as computed by DPTTRS.  On exit,
	     the improved solution matrix X.

     LDX     (input) INTEGER
	     The leading dimension of the array	X.  LDX	>= max(1,N).

     FERR    (output) DOUBLE PRECISION array, dimension	(NRHS)
	     The forward error bound for each solution vector X(j) (the	j-th
	     column of the solution matrix X).	If XTRUE is the	true solution
	     corresponding to X(j), FERR(j) is an estimated upper bound	for
	     the magnitude of the largest element in (X(j) - XTRUE) divided by
	     the magnitude of the largest element in X(j).

     BERR    (output) DOUBLE PRECISION array, dimension	(NRHS)
	     The componentwise relative	backward error of each solution	vector
	     X(j) (i.e., the smallest relative change in any element of	A or B
	     that makes	X(j) an	exact solution).

     WORK    (workspace) DOUBLE	PRECISION array, dimension (2*N)

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value

PARAMETERS    [Toc]    [Back]

     ITMAX is the maximum number of steps of iterative refinement.
DPTRFS(3F)							    DPTRFS(3F)


NAME    [Toc]    [Back]

     DPTRFS - improve the computed solution to a system	of linear equations
     when the coefficient matrix is symmetric positive definite	and
     tridiagonal, and provides error bounds and	backward error estimates for
     the solution

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DPTRFS(	N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
			WORK, INFO )

	 INTEGER	INFO, LDB, LDX,	N, NRHS

	 DOUBLE		PRECISION B( LDB, * ), BERR( * ), D( * ), DF( *	), E(
			* ), EF( * ), FERR( * ), WORK( * ), X( LDX, * )

PURPOSE    [Toc]    [Back]

     DPTRFS improves the computed solution to a	system of linear equations
     when the coefficient matrix is symmetric positive definite	and
     tridiagonal, and provides error bounds and	backward error estimates for
     the solution.

ARGUMENTS    [Toc]    [Back]

     N	     (input) INTEGER
	     The order of the matrix A.	 N >= 0.

     NRHS    (input) INTEGER
	     The number	of right hand sides, i.e., the number of columns of
	     the matrix	B.  NRHS >= 0.

     D	     (input) DOUBLE PRECISION array, dimension (N)
	     The n diagonal elements of	the tridiagonal	matrix A.

     E	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) subdiagonal elements of the tridiagonal matrix A.

     DF	     (input) DOUBLE PRECISION array, dimension (N)
	     The n diagonal elements of	the diagonal matrix D from the
	     factorization computed by DPTTRF.

     EF	     (input) DOUBLE PRECISION array, dimension (N-1)
	     The (n-1) subdiagonal elements of the unit	bidiagonal factor L
	     from the factorization computed by	DPTTRF.

     B	     (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
	     The right hand side matrix	B.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= max(1,N).






									Page 1






DPTRFS(3F)							    DPTRFS(3F)



     X	     (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
	     On	entry, the solution matrix X, as computed by DPTTRS.  On exit,
	     the improved solution matrix X.

     LDX     (input) INTEGER
	     The leading dimension of the array	X.  LDX	>= max(1,N).

     FERR    (output) DOUBLE PRECISION array, dimension	(NRHS)
	     The forward error bound for each solution vector X(j) (the	j-th
	     column of the solution matrix X).	If XTRUE is the	true solution
	     corresponding to X(j), FERR(j) is an estimated upper bound	for
	     the magnitude of the largest element in (X(j) - XTRUE) divided by
	     the magnitude of the largest element in X(j).

     BERR    (output) DOUBLE PRECISION array, dimension	(NRHS)
	     The componentwise relative	backward error of each solution	vector
	     X(j) (i.e., the smallest relative change in any element of	A or B
	     that makes	X(j) an	exact solution).

     WORK    (workspace) DOUBLE	PRECISION array, dimension (2*N)

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value

PARAMETERS    [Toc]    [Back]

     ITMAX is the maximum number of steps of iterative refinement.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
zptrfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian positiv
cptrfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is Hermitian positiv
dsprfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
csyrfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
ssyrfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
zsprfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
csprfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
ssprfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
zsyrfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
dsyrfs IRIX improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefin
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service