*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlanv2 (3)              
Title
Content
Arch
Section
 

Contents


DLANV2(3F)							    DLANV2(3F)


NAME    [Toc]    [Back]

     DLANV2 - compute the Schur	factorization of a real	2-by-2 nonsymmetric
     matrix in standard	form

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLANV2(	A, B, C, D, RT1R, RT1I,	RT2R, RT2I, CS,	SN )

	 DOUBLE		PRECISION A, B,	C, CS, D, RT1I,	RT1R, RT2I, RT2R, SN

PURPOSE    [Toc]    [Back]

     DLANV2 computes the Schur factorization of	a real 2-by-2 nonsymmetric
     matrix in standard	form:

	  [ A  B ] = [ CS -SN ]	[ AA  BB ] [ CS	 SN ]
	  [ C  D ]   [ SN  CS ]	[ CC  DD ] [-SN	 CS ]

     where either
     1)	CC = 0 so that AA and DD are real eigenvalues of the matrix, or	2) AA
     = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate
     eigenvalues.

ARGUMENTS    [Toc]    [Back]

     A	     (input/output) DOUBLE PRECISION
	     B	     (input/output) DOUBLE PRECISION C	     (input/output)
	     DOUBLE PRECISION D	      (input/output) DOUBLE PRECISION On
	     entry, the	elements of the	input matrix.  On exit,	they are
	     overwritten by the	elements of the	standardised Schur form.

     RT1R    (output) DOUBLE PRECISION
	     RT1I    (output) DOUBLE PRECISION RT2R    (output)	DOUBLE
	     PRECISION RT2I    (output)	DOUBLE PRECISION The real and
	     imaginary parts of	the eigenvalues. If the	eigenvalues are	both
	     real, abs(RT1R) >=	abs(RT2R); if the eigenvalues are a complex
	     conjugate pair, RT1I > 0.

     CS	     (output) DOUBLE PRECISION
	     SN	     (output) DOUBLE PRECISION Parameters of the rotation
	     matrix.
DLANV2(3F)							    DLANV2(3F)


NAME    [Toc]    [Back]

     DLANV2 - compute the Schur	factorization of a real	2-by-2 nonsymmetric
     matrix in standard	form

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLANV2(	A, B, C, D, RT1R, RT1I,	RT2R, RT2I, CS,	SN )

	 DOUBLE		PRECISION A, B,	C, CS, D, RT1I,	RT1R, RT2I, RT2R, SN

PURPOSE    [Toc]    [Back]

     DLANV2 computes the Schur factorization of	a real 2-by-2 nonsymmetric
     matrix in standard	form:

	  [ A  B ] = [ CS -SN ]	[ AA  BB ] [ CS	 SN ]
	  [ C  D ]   [ SN  CS ]	[ CC  DD ] [-SN	 CS ]

     where either
     1)	CC = 0 so that AA and DD are real eigenvalues of the matrix, or	2) AA
     = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate
     eigenvalues.

ARGUMENTS    [Toc]    [Back]

     A	     (input/output) DOUBLE PRECISION
	     B	     (input/output) DOUBLE PRECISION C	     (input/output)
	     DOUBLE PRECISION D	      (input/output) DOUBLE PRECISION On
	     entry, the	elements of the	input matrix.  On exit,	they are
	     overwritten by the	elements of the	standardised Schur form.

     RT1R    (output) DOUBLE PRECISION
	     RT1I    (output) DOUBLE PRECISION RT2R    (output)	DOUBLE
	     PRECISION RT2I    (output)	DOUBLE PRECISION The real and
	     imaginary parts of	the eigenvalues. If the	eigenvalues are	both
	     real, abs(RT1R) >=	abs(RT2R); if the eigenvalues are a complex
	     conjugate pair, RT1I > 0.

     CS	     (output) DOUBLE PRECISION
	     SN	     (output) DOUBLE PRECISION Parameters of the rotation
	     matrix.


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
sgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
sgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
dgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
dgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
cgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
zgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
zgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
cgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
strsen IRIX reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues
dtrsen IRIX reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service