*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/sorgl2 (3)              
Title
Content
Arch
Section
 

Contents


SORGL2(3F)							    SORGL2(3F)


NAME    [Toc]    [Back]

     SORGL2 - generate an m by n real matrix Q with orthonormal	rows,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SORGL2(	M, N, K, A, LDA, TAU, WORK, INFO )

	 INTEGER	INFO, K, LDA, M, N

	 REAL		A( LDA,	* ), TAU( * ), WORK( * )

PURPOSE    [Toc]    [Back]

     SORGL2 generates an m by n	real matrix Q with orthonormal rows, which is
     defined as	the first m rows of a product of k elementary reflectors of
     order n

	   Q  =	 H(k) .	. . H(2) H(1)

     as	returned by SGELQF.

ARGUMENTS    [Toc]    [Back]

     M	     (input) INTEGER
	     The number	of rows	of the matrix Q. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix Q. N >= M.

     K	     (input) INTEGER
	     The number	of elementary reflectors whose product defines the
	     matrix Q. M >= K >= 0.

     A	     (input/output) REAL array,	dimension (LDA,N)
	     On	entry, the i-th	row must contain the vector which defines the
	     elementary	reflector H(i),	for i =	1,2,...,k, as returned by
	     SGELQF in the first k rows	of its array argument A.  On exit, the
	     m-by-n matrix Q.

     LDA     (input) INTEGER
	     The first dimension of the	array A. LDA >=	max(1,M).

     TAU     (input) REAL array, dimension (K)
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i), as returned by SGELQF.

     WORK    (workspace) REAL array, dimension (M)

     INFO    (output) INTEGER
	     = 0: successful exit
	     < 0: if INFO = -i,	the i-th argument has an illegal value
SORGL2(3F)							    SORGL2(3F)


NAME    [Toc]    [Back]

     SORGL2 - generate an m by n real matrix Q with orthonormal	rows,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SORGL2(	M, N, K, A, LDA, TAU, WORK, INFO )

	 INTEGER	INFO, K, LDA, M, N

	 REAL		A( LDA,	* ), TAU( * ), WORK( * )

PURPOSE    [Toc]    [Back]

     SORGL2 generates an m by n	real matrix Q with orthonormal rows, which is
     defined as	the first m rows of a product of k elementary reflectors of
     order n

	   Q  =	 H(k) .	. . H(2) H(1)

     as	returned by SGELQF.

ARGUMENTS    [Toc]    [Back]

     M	     (input) INTEGER
	     The number	of rows	of the matrix Q. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix Q. N >= M.

     K	     (input) INTEGER
	     The number	of elementary reflectors whose product defines the
	     matrix Q. M >= K >= 0.

     A	     (input/output) REAL array,	dimension (LDA,N)
	     On	entry, the i-th	row must contain the vector which defines the
	     elementary	reflector H(i),	for i =	1,2,...,k, as returned by
	     SGELQF in the first k rows	of its array argument A.  On exit, the
	     m-by-n matrix Q.

     LDA     (input) INTEGER
	     The first dimension of the	array A. LDA >=	max(1,M).

     TAU     (input) REAL array, dimension (K)
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i), as returned by SGELQF.

     WORK    (workspace) REAL array, dimension (M)

     INFO    (output) INTEGER
	     = 0: successful exit
	     < 0: if INFO = -i,	the i-th argument has an illegal value


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
sorgrq IRIX generate an M-by-N real matrix Q with orthonormal rows,
dorglq IRIX generate an M-by-N real matrix Q with orthonormal rows,
dorgrq IRIX generate an M-by-N real matrix Q with orthonormal rows,
sorglq IRIX generate an M-by-N real matrix Q with orthonormal rows,
cunglq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
zungl2 IRIX generate an m-by-n complex matrix Q with orthonormal rows,
zunglq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
zungr2 IRIX generate an m by n complex matrix Q with orthonormal rows,
zungrq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
cungrq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service