*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/slasq3 (3)              
Title
Content
Arch
Section
 

Contents


SLASQ3(3F)							    SLASQ3(3F)


NAME    [Toc]    [Back]

     SLASQ3 - SLASQ3 is	the workhorse of the whole bidiagonal SVD algorithm

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SLASQ3(	N, Q, E, QQ, EE, SUP, SIGMA, KEND, OFF,	IPHASE,	ICONV,
			EPS, TOL2, SMALL2 )

	 INTEGER	ICONV, IPHASE, KEND, N,	OFF

	 REAL		EPS, SIGMA, SMALL2, SUP, TOL2

	 REAL		E( * ),	EE( * ), Q( * ), QQ( * )

PURPOSE    [Toc]    [Back]

	SLASQ3 is the workhorse	of the whole bidiagonal	SVD algorithm.
	This can be described as the differential qd with shifts.

ARGUMENTS    [Toc]    [Back]

     N	     (input/output) INTEGER
	     On	entry, N specifies the number of rows and columns in the
	     matrix. N must be at least	3.  On exit N is non-negative and less
	     than the input value.

     Q	     (input/output) REAL array,	dimension (N)
	     Q array in	ping (see IPHASE below)

     E	     (input/output) REAL array,	dimension (N)
	     E array in	ping (see IPHASE below)

     QQ	     (input/output) REAL array,	dimension (N)
	     Q array in	pong (see IPHASE below)

     EE	     (input/output) REAL array,	dimension (N)
	     E array in	pong (see IPHASE below)

     SUP     (input/output) REAL
	     Upper bound for the smallest eigenvalue

     SIGMA   (input/output) REAL
	     Accumulated shift for the present submatrix

     KEND    (input/output) INTEGER
	     Index where minimum D(i) occurs in	recurrence for splitting
	     criterion

     OFF     (input/output) INTEGER
	     Offset for	arrays

     IPHASE  (input/output) INTEGER
	     If	IPHASE = 1 (ping) then data is in Q and	E arrays If IPHASE = 2
	     (pong) then data is in QQ and EE arrays



									Page 1






SLASQ3(3F)							    SLASQ3(3F)



     ICONV   (input) INTEGER
	     If	ICONV =	0 a bottom part	of a matrix (with a split) If ICONV
	     =-3 a top part of a matrix	(with a	split)

     EPS     (input) REAL
	     Machine epsilon

     TOL2    (input) REAL
	     Square of the relative tolerance TOL as defined in	SLASQ1

     SMALL2  (input) REAL
	     A threshold value as defined in SLASQ1
SLASQ3(3F)							    SLASQ3(3F)


NAME    [Toc]    [Back]

     SLASQ3 - SLASQ3 is	the workhorse of the whole bidiagonal SVD algorithm

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SLASQ3(	N, Q, E, QQ, EE, SUP, SIGMA, KEND, OFF,	IPHASE,	ICONV,
			EPS, TOL2, SMALL2 )

	 INTEGER	ICONV, IPHASE, KEND, N,	OFF

	 REAL		EPS, SIGMA, SMALL2, SUP, TOL2

	 REAL		E( * ),	EE( * ), Q( * ), QQ( * )

PURPOSE    [Toc]    [Back]

	SLASQ3 is the workhorse	of the whole bidiagonal	SVD algorithm.
	This can be described as the differential qd with shifts.

ARGUMENTS    [Toc]    [Back]

     N	     (input/output) INTEGER
	     On	entry, N specifies the number of rows and columns in the
	     matrix. N must be at least	3.  On exit N is non-negative and less
	     than the input value.

     Q	     (input/output) REAL array,	dimension (N)
	     Q array in	ping (see IPHASE below)

     E	     (input/output) REAL array,	dimension (N)
	     E array in	ping (see IPHASE below)

     QQ	     (input/output) REAL array,	dimension (N)
	     Q array in	pong (see IPHASE below)

     EE	     (input/output) REAL array,	dimension (N)
	     E array in	pong (see IPHASE below)

     SUP     (input/output) REAL
	     Upper bound for the smallest eigenvalue

     SIGMA   (input/output) REAL
	     Accumulated shift for the present submatrix

     KEND    (input/output) INTEGER
	     Index where minimum D(i) occurs in	recurrence for splitting
	     criterion

     OFF     (input/output) INTEGER
	     Offset for	arrays

     IPHASE  (input/output) INTEGER
	     If	IPHASE = 1 (ping) then data is in Q and	E arrays If IPHASE = 2
	     (pong) then data is in QQ and EE arrays



									Page 1






SLASQ3(3F)							    SLASQ3(3F)



     ICONV   (input) INTEGER
	     If	ICONV =	0 a bottom part	of a matrix (with a split) If ICONV
	     =-3 a top part of a matrix	(with a	split)

     EPS     (input) REAL
	     Machine epsilon

     TOL2    (input) REAL
	     Square of the relative tolerance TOL as defined in	SLASQ1

     SMALL2  (input) REAL
	     A threshold value as defined in SLASQ1


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
dlasq3 IRIX DLASQ3 is the workhorse of the whole bidiagonal SVD algorithm
sbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
dbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
zbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
cbdsqr IRIX compute the singular value decomposition (SVD) of a real N-by-N (upper or lower) bidiagonal matrix B
clabrd IRIX reduce the first NB rows and columns of a complex general m by n matrix A to upper or lower real bidiagonal fo
cgebrd IRIX reduce a general complex M-by-N matrix A to upper or lower bidiagonal form B by a unitary transformation
dgbbrd IRIX reduce a real general m-by-n band matrix A to upper bidiagonal form B by an orthogonal transformation
dgebd2 IRIX reduce a real general m by n matrix A to upper or lower bidiagonal form B by an orthogonal transformation
dgebrd IRIX reduce a general real M-by-N matrix A to upper or lower bidiagonal form B by an orthogonal transformation
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service