*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/slanv2 (3)              
Title
Content
Arch
Section
 

Contents


SLANV2(3F)							    SLANV2(3F)


NAME    [Toc]    [Back]

     SLANV2 - compute the Schur	factorization of a real	2-by-2 nonsymmetric
     matrix in standard	form

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SLANV2(	A, B, C, D, RT1R, RT1I,	RT2R, RT2I, CS,	SN )

	 REAL		A, B, C, CS, D,	RT1I, RT1R, RT2I, RT2R,	SN

PURPOSE    [Toc]    [Back]

     SLANV2 computes the Schur factorization of	a real 2-by-2 nonsymmetric
     matrix in standard	form:

	  [ A  B ] = [ CS -SN ]	[ AA  BB ] [ CS	 SN ]
	  [ C  D ]   [ SN  CS ]	[ CC  DD ] [-SN	 CS ]

     where either
     1)	CC = 0 so that AA and DD are real eigenvalues of the matrix, or	2) AA
     = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate
     eigenvalues.

ARGUMENTS    [Toc]    [Back]

     A	     (input/output) REAL
	     B	     (input/output) REAL C	 (input/output)	REAL D
	     (input/output) REAL On entry, the elements	of the input matrix.
	     On	exit, they are overwritten by the elements of the standardised
	     Schur form.

     RT1R    (output) REAL
	     RT1I    (output) REAL RT2R	   (output) REAL RT2I	 (output) REAL
	     The real and imaginary parts of the eigenvalues. If the
	     eigenvalues are both real,	abs(RT1R) >= abs(RT2R);	if the
	     eigenvalues are a complex conjugate pair, RT1I > 0.

     CS	     (output) REAL
	     SN	     (output) REAL Parameters of the rotation matrix.
SLANV2(3F)							    SLANV2(3F)


NAME    [Toc]    [Back]

     SLANV2 - compute the Schur	factorization of a real	2-by-2 nonsymmetric
     matrix in standard	form

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SLANV2(	A, B, C, D, RT1R, RT1I,	RT2R, RT2I, CS,	SN )

	 REAL		A, B, C, CS, D,	RT1I, RT1R, RT2I, RT2R,	SN

PURPOSE    [Toc]    [Back]

     SLANV2 computes the Schur factorization of	a real 2-by-2 nonsymmetric
     matrix in standard	form:

	  [ A  B ] = [ CS -SN ]	[ AA  BB ] [ CS	 SN ]
	  [ C  D ]   [ SN  CS ]	[ CC  DD ] [-SN	 CS ]

     where either
     1)	CC = 0 so that AA and DD are real eigenvalues of the matrix, or	2) AA
     = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate
     eigenvalues.

ARGUMENTS    [Toc]    [Back]

     A	     (input/output) REAL
	     B	     (input/output) REAL C	 (input/output)	REAL D
	     (input/output) REAL On entry, the elements	of the input matrix.
	     On	exit, they are overwritten by the elements of the standardised
	     Schur form.

     RT1R    (output) REAL
	     RT1I    (output) REAL RT2R	   (output) REAL RT2I	 (output) REAL
	     The real and imaginary parts of the eigenvalues. If the
	     eigenvalues are both real,	abs(RT1R) >= abs(RT2R);	if the
	     eigenvalues are a complex conjugate pair, RT1I > 0.

     CS	     (output) REAL
	     SN	     (output) REAL Parameters of the rotation matrix.


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
sgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
sgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
dgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
dgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
cgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
zgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
zgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
cgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
strsen IRIX reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues
dtrsen IRIX reorder the real Schur factorization of a real matrix A = Q*T*Q**T, so that a selected cluster of eigenvalues
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service