*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/slags2 (3)              
Title
Content
Arch
Section
 

Contents


SLAGS2(3F)							    SLAGS2(3F)


NAME    [Toc]    [Back]

     SLAGS2 - compute 2-by-2 orthogonal	matrices U, V and Q, such that if (
     UPPER ) then   U'*A*Q = U'*( A1 A2	)*Q = (	x 0 )  ( 0 A3 )	( x x )	and
     V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )	( 0 B3 ) ( x x )  or if	( .NOT.UPPER )
     then   U'*A*Q = U'*( A1 0 )*Q = ( x x )  (	A2 A3 )	( 0 x )	and  V'*B*Q =
     V'*( B1 0 )*Q = ( x x )  (	B2 B3 )	( 0 x )	 The rows of the transformed A
     and B are parallel, where	 U = ( CSU SNU ), V = (	CSV SNV	), Q = ( CSQ
     SNQ )  ( -SNU CSU ) ( -SNV	CSV ) (	-SNQ CSQ )  Z' denotes the transpose
     of	Z

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SLAGS2(	UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
			CSQ, SNQ )

	 LOGICAL	UPPER

	 REAL		A1, A2,	A3, B1,	B2, B3,	CSQ, CSU, CSV, SNQ, SNU, SNV

PURPOSE    [Toc]    [Back]

     SLAGS2 computes 2-by-2 orthogonal matrices	U, V and Q, such that if (
     UPPER ) then


ARGUMENTS    [Toc]    [Back]

     UPPER   (input) LOGICAL
	     = .TRUE.: the input matrices A and	B are upper triangular.
	     = .FALSE.:	the input matrices A and B are lower triangular.

     A1	     (input) REAL
	     A2	     (input) REAL A3	  (input) REAL On entry, A1, A2	and A3
	     are elements of the input 2-by-2 upper (lower) triangular matrix
	     A.

     B1	     (input) REAL
	     B2	     (input) REAL B3	  (input) REAL On entry, B1, B2	and B3
	     are elements of the input 2-by-2 upper (lower) triangular matrix
	     B.

     CSU     (output) REAL
	     SNU     (output) REAL The desired orthogonal matrix U.

     CSV     (output) REAL
	     SNV     (output) REAL The desired orthogonal matrix V.

     CSQ     (output) REAL
	     SNQ     (output) REAL The desired orthogonal matrix Q.
SLAGS2(3F)							    SLAGS2(3F)


NAME    [Toc]    [Back]

     SLAGS2 - compute 2-by-2 orthogonal	matrices U, V and Q, such that if (
     UPPER ) then   U'*A*Q = U'*( A1 A2	)*Q = (	x 0 )  ( 0 A3 )	( x x )	and
     V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )	( 0 B3 ) ( x x )  or if	( .NOT.UPPER )
     then   U'*A*Q = U'*( A1 0 )*Q = ( x x )  (	A2 A3 )	( 0 x )	and  V'*B*Q =
     V'*( B1 0 )*Q = ( x x )  (	B2 B3 )	( 0 x )	 The rows of the transformed A
     and B are parallel, where	 U = ( CSU SNU ), V = (	CSV SNV	), Q = ( CSQ
     SNQ )  ( -SNU CSU ) ( -SNV	CSV ) (	-SNQ CSQ )  Z' denotes the transpose
     of	Z

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SLAGS2(	UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
			CSQ, SNQ )

	 LOGICAL	UPPER

	 REAL		A1, A2,	A3, B1,	B2, B3,	CSQ, CSU, CSV, SNQ, SNU, SNV

PURPOSE    [Toc]    [Back]

     SLAGS2 computes 2-by-2 orthogonal matrices	U, V and Q, such that if (
     UPPER ) then


ARGUMENTS    [Toc]    [Back]

     UPPER   (input) LOGICAL
	     = .TRUE.: the input matrices A and	B are upper triangular.
	     = .FALSE.:	the input matrices A and B are lower triangular.

     A1	     (input) REAL
	     A2	     (input) REAL A3	  (input) REAL On entry, A1, A2	and A3
	     are elements of the input 2-by-2 upper (lower) triangular matrix
	     A.

     B1	     (input) REAL
	     B2	     (input) REAL B3	  (input) REAL On entry, B1, B2	and B3
	     are elements of the input 2-by-2 upper (lower) triangular matrix
	     B.

     CSU     (output) REAL
	     SNU     (output) REAL The desired orthogonal matrix U.

     CSV     (output) REAL
	     SNV     (output) REAL The desired orthogonal matrix V.

     CSQ     (output) REAL
	     SNQ     (output) REAL The desired orthogonal matrix Q.


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
sgghrd IRIX reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal transformations, wh
dgghrd IRIX reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal transformations, wh
zlags2 IRIX compute 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
clags2 IRIX compute 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
chseqr IRIX compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z from the
zhseqr IRIX compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z from the
dhseqr IRIX compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Sch
shseqr IRIX compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Sch
stzrqf IRIX reduce the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal tra
dtzrqf IRIX reduce the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal tra
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service