*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/sgeev (3)              
Title
Content
Arch
Section
 

Contents


SGEEV(3F)							     SGEEV(3F)


NAME    [Toc]    [Back]

     SGEEV - compute for an N-by-N real	nonsymmetric matrix A, the eigenvalues
     and, optionally, the left and/or right eigenvectors

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SGEEV( JOBVL, JOBVR, N,	A, LDA,	WR, WI,	VL, LDVL, VR, LDVR,
		       WORK, LWORK, INFO )

	 CHARACTER     JOBVL, JOBVR

	 INTEGER       INFO, LDA, LDVL,	LDVR, LWORK, N

	 REAL	       A( LDA, * ), VL(	LDVL, *	), VR( LDVR, * ), WI( *	),
		       WORK( * ), WR( *	)

PURPOSE    [Toc]    [Back]

     SGEEV computes for	an N-by-N real nonsymmetric matrix A, the eigenvalues
     and, optionally, the left and/or right eigenvectors.

     The right eigenvector v(j)	of A satisfies
		      A	* v(j) = lambda(j) * v(j)
     where lambda(j) is	its eigenvalue.
     The left eigenvector u(j) of A satisfies
		   u(j)**H * A = lambda(j) * u(j)**H
     where u(j)**H denotes the conjugate transpose of u(j).

     The computed eigenvectors are normalized to have Euclidean	norm equal to
     1 and largest component real.

ARGUMENTS    [Toc]    [Back]

     JOBVL   (input) CHARACTER*1
	     = 'N': left eigenvectors of A are not computed;
	     = 'V': left eigenvectors of A are computed.

     JOBVR   (input) CHARACTER*1
	     = 'N': right eigenvectors of A are	not computed;
	     = 'V': right eigenvectors of A are	computed.

     N	     (input) INTEGER
	     The order of the matrix A.	N >= 0.

     A	     (input/output) REAL array,	dimension (LDA,N)
	     On	entry, the N-by-N matrix A.  On	exit, A	has been overwritten.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     WR	     (output) REAL array, dimension (N)
	     WI	     (output) REAL array, dimension (N)	WR and WI contain the
	     real and imaginary	parts, respectively, of	the computed
	     eigenvalues.  Complex conjugate pairs of eigenvalues appear



									Page 1






SGEEV(3F)							     SGEEV(3F)



	     consecutively with	the eigenvalue having the positive imaginary
	     part first.

     VL	     (output) REAL array, dimension (LDVL,N)
	     If	JOBVL =	'V', the left eigenvectors u(j)	are stored one after
	     another in	the columns of VL, in the same order as	their
	     eigenvalues.  If JOBVL = 'N', VL is not referenced.  If the j-th
	     eigenvalue	is real, then u(j) = VL(:,j), the j-th column of VL.
	     If	the j-th and (j+1)-st eigenvalues form a complex conjugate
	     pair, then	u(j) = VL(:,j) + i*VL(:,j+1) and
	     u(j+1) = VL(:,j) -	i*VL(:,j+1).

     LDVL    (input) INTEGER
	     The leading dimension of the array	VL.  LDVL >= 1;	if JOBVL =
	     'V', LDVL >= N.

     VR	     (output) REAL array, dimension (LDVR,N)
	     If	JOBVR =	'V', the right eigenvectors v(j) are stored one	after
	     another in	the columns of VR, in the same order as	their
	     eigenvalues.  If JOBVR = 'N', VR is not referenced.  If the j-th
	     eigenvalue	is real, then v(j) = VR(:,j), the j-th column of VR.
	     If	the j-th and (j+1)-st eigenvalues form a complex conjugate
	     pair, then	v(j) = VR(:,j) + i*VR(:,j+1) and
	     v(j+1) = VR(:,j) -	i*VR(:,j+1).

     LDVR    (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= 1;	if JOBVR =
	     'V', LDVR >= N.

     WORK    (workspace/output)	REAL array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  LWORK >=	max(1,3*N), and	if
	     JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.	For good performance,
	     LWORK must	generally be larger.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  if INFO = i,	the QR algorithm failed	to compute all the
	     eigenvalues, and no eigenvectors have been	computed; elements
	     i+1:N of WR and WI	contain	eigenvalues which have converged.
SGEEV(3F)							     SGEEV(3F)


NAME    [Toc]    [Back]

     SGEEV - compute for an N-by-N real	nonsymmetric matrix A, the eigenvalues
     and, optionally, the left and/or right eigenvectors

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	SGEEV( JOBVL, JOBVR, N,	A, LDA,	WR, WI,	VL, LDVL, VR, LDVR,
		       WORK, LWORK, INFO )

	 CHARACTER     JOBVL, JOBVR

	 INTEGER       INFO, LDA, LDVL,	LDVR, LWORK, N

	 REAL	       A( LDA, * ), VL(	LDVL, *	), VR( LDVR, * ), WI( *	),
		       WORK( * ), WR( *	)

PURPOSE    [Toc]    [Back]

     SGEEV computes for	an N-by-N real nonsymmetric matrix A, the eigenvalues
     and, optionally, the left and/or right eigenvectors.

     The right eigenvector v(j)	of A satisfies
		      A	* v(j) = lambda(j) * v(j)
     where lambda(j) is	its eigenvalue.
     The left eigenvector u(j) of A satisfies
		   u(j)**H * A = lambda(j) * u(j)**H
     where u(j)**H denotes the conjugate transpose of u(j).

     The computed eigenvectors are normalized to have Euclidean	norm equal to
     1 and largest component real.

ARGUMENTS    [Toc]    [Back]

     JOBVL   (input) CHARACTER*1
	     = 'N': left eigenvectors of A are not computed;
	     = 'V': left eigenvectors of A are computed.

     JOBVR   (input) CHARACTER*1
	     = 'N': right eigenvectors of A are	not computed;
	     = 'V': right eigenvectors of A are	computed.

     N	     (input) INTEGER
	     The order of the matrix A.	N >= 0.

     A	     (input/output) REAL array,	dimension (LDA,N)
	     On	entry, the N-by-N matrix A.  On	exit, A	has been overwritten.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= max(1,N).

     WR	     (output) REAL array, dimension (N)
	     WI	     (output) REAL array, dimension (N)	WR and WI contain the
	     real and imaginary	parts, respectively, of	the computed
	     eigenvalues.  Complex conjugate pairs of eigenvalues appear



									Page 1






SGEEV(3F)							     SGEEV(3F)



	     consecutively with	the eigenvalue having the positive imaginary
	     part first.

     VL	     (output) REAL array, dimension (LDVL,N)
	     If	JOBVL =	'V', the left eigenvectors u(j)	are stored one after
	     another in	the columns of VL, in the same order as	their
	     eigenvalues.  If JOBVL = 'N', VL is not referenced.  If the j-th
	     eigenvalue	is real, then u(j) = VL(:,j), the j-th column of VL.
	     If	the j-th and (j+1)-st eigenvalues form a complex conjugate
	     pair, then	u(j) = VL(:,j) + i*VL(:,j+1) and
	     u(j+1) = VL(:,j) -	i*VL(:,j+1).

     LDVL    (input) INTEGER
	     The leading dimension of the array	VL.  LDVL >= 1;	if JOBVL =
	     'V', LDVL >= N.

     VR	     (output) REAL array, dimension (LDVR,N)
	     If	JOBVR =	'V', the right eigenvectors v(j) are stored one	after
	     another in	the columns of VR, in the same order as	their
	     eigenvalues.  If JOBVR = 'N', VR is not referenced.  If the j-th
	     eigenvalue	is real, then v(j) = VR(:,j), the j-th column of VR.
	     If	the j-th and (j+1)-st eigenvalues form a complex conjugate
	     pair, then	v(j) = VR(:,j) + i*VR(:,j+1) and
	     v(j+1) = VR(:,j) -	i*VR(:,j+1).

     LDVR    (input) INTEGER
	     The leading dimension of the array	VR.  LDVR >= 1;	if JOBVR =
	     'V', LDVR >= N.

     WORK    (workspace/output)	REAL array, dimension (LWORK)
	     On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

     LWORK   (input) INTEGER
	     The dimension of the array	WORK.  LWORK >=	max(1,3*N), and	if
	     JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.	For good performance,
	     LWORK must	generally be larger.

     INFO    (output) INTEGER
	     = 0:  successful exit
	     < 0:  if INFO = -i, the i-th argument had an illegal value.
	     > 0:  if INFO = i,	the QR algorithm failed	to compute all the
	     eigenvalues, and no eigenvectors have been	computed; elements
	     i+1:N of WR and WI	contain	eigenvalues which have converged.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
cgeev IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right ei
zgeev IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right ei
zgeevx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right ei
cgeevx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right ei
sgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
dgeesx IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
dgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
sgees IRIX compute for an N-by-N real nonsymmetric matrix A, the eigenvalues, the real Schur form T, and, optionally, the
zgees IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
zgeesx IRIX compute for an N-by-N complex nonsymmetric matrix A, the eigenvalues, the Schur form T, and, optionally, the m
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service