*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dorgr2 (3)              
Title
Content
Arch
Section
 

Contents


DORGR2(3F)							    DORGR2(3F)


NAME    [Toc]    [Back]

     DORGR2 - generate an m by n real matrix Q with orthonormal	rows,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DORGR2(	M, N, K, A, LDA, TAU, WORK, INFO )

	 INTEGER	INFO, K, LDA, M, N

	 DOUBLE		PRECISION A( LDA, * ), TAU( * ), WORK( * )

PURPOSE    [Toc]    [Back]

     DORGR2 generates an m by n	real matrix Q with orthonormal rows, which is
     defined as	the last m rows	of a product of	k elementary reflectors	of
     order n

	   Q  =	 H(1) H(2) . . . H(k)

     as	returned by DGERQF.

ARGUMENTS    [Toc]    [Back]

     M	     (input) INTEGER
	     The number	of rows	of the matrix Q. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix Q. N >= M.

     K	     (input) INTEGER
	     The number	of elementary reflectors whose product defines the
	     matrix Q. M >= K >= 0.

     A	     (input/output) DOUBLE PRECISION array, dimension (LDA,N)
	     On	entry, the (m-k+i)-th row must contain the vector which
	     defines the elementary reflector H(i), for	i = 1,2,...,k, as
	     returned by DGERQF	in the last k rows of its array	argument A.
	     On	exit, the m by n matrix	Q.

     LDA     (input) INTEGER
	     The first dimension of the	array A. LDA >=	max(1,M).

     TAU     (input) DOUBLE PRECISION array, dimension (K)
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i), as returned by DGERQF.

     WORK    (workspace) DOUBLE	PRECISION array, dimension (M)

     INFO    (output) INTEGER
	     = 0: successful exit
	     < 0: if INFO = -i,	the i-th argument has an illegal value
DORGR2(3F)							    DORGR2(3F)


NAME    [Toc]    [Back]

     DORGR2 - generate an m by n real matrix Q with orthonormal	rows,

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DORGR2(	M, N, K, A, LDA, TAU, WORK, INFO )

	 INTEGER	INFO, K, LDA, M, N

	 DOUBLE		PRECISION A( LDA, * ), TAU( * ), WORK( * )

PURPOSE    [Toc]    [Back]

     DORGR2 generates an m by n	real matrix Q with orthonormal rows, which is
     defined as	the last m rows	of a product of	k elementary reflectors	of
     order n

	   Q  =	 H(1) H(2) . . . H(k)

     as	returned by DGERQF.

ARGUMENTS    [Toc]    [Back]

     M	     (input) INTEGER
	     The number	of rows	of the matrix Q. M >= 0.

     N	     (input) INTEGER
	     The number	of columns of the matrix Q. N >= M.

     K	     (input) INTEGER
	     The number	of elementary reflectors whose product defines the
	     matrix Q. M >= K >= 0.

     A	     (input/output) DOUBLE PRECISION array, dimension (LDA,N)
	     On	entry, the (m-k+i)-th row must contain the vector which
	     defines the elementary reflector H(i), for	i = 1,2,...,k, as
	     returned by DGERQF	in the last k rows of its array	argument A.
	     On	exit, the m by n matrix	Q.

     LDA     (input) INTEGER
	     The first dimension of the	array A. LDA >=	max(1,M).

     TAU     (input) DOUBLE PRECISION array, dimension (K)
	     TAU(i) must contain the scalar factor of the elementary reflector
	     H(i), as returned by DGERQF.

     WORK    (workspace) DOUBLE	PRECISION array, dimension (M)

     INFO    (output) INTEGER
	     = 0: successful exit
	     < 0: if INFO = -i,	the i-th argument has an illegal value


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
sorgrq IRIX generate an M-by-N real matrix Q with orthonormal rows,
dorglq IRIX generate an M-by-N real matrix Q with orthonormal rows,
dorgrq IRIX generate an M-by-N real matrix Q with orthonormal rows,
sorglq IRIX generate an M-by-N real matrix Q with orthonormal rows,
cunglq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
zungl2 IRIX generate an m-by-n complex matrix Q with orthonormal rows,
zunglq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
zungr2 IRIX generate an m by n complex matrix Q with orthonormal rows,
zungrq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
cungrq IRIX generate an M-by-N complex matrix Q with orthonormal rows,
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service