*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlags2 (3)              
Title
Content
Arch
Section
 

Contents


DLAGS2(3F)							    DLAGS2(3F)


NAME    [Toc]    [Back]

     DLAGS2 - compute 2-by-2 orthogonal	matrices U, V and Q, such that if (
     UPPER ) then   U'*A*Q = U'*( A1 A2	)*Q = (	x 0 )  ( 0 A3 )	( x x )	and
     V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )	( 0 B3 ) ( x x )  or if	( .NOT.UPPER )
     then   U'*A*Q = U'*( A1 0 )*Q = ( x x )  (	A2 A3 )	( 0 x )	and  V'*B*Q =
     V'*( B1 0 )*Q = ( x x )  (	B2 B3 )	( 0 x )	 The rows of the transformed A
     and B are parallel, where	 U = ( CSU SNU ), V = (	CSV SNV	), Q = ( CSQ
     SNQ )  ( -SNU CSU ) ( -SNV	CSV ) (	-SNQ CSQ )  Z' denotes the transpose
     of	Z

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAGS2(	UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
			CSQ, SNQ )

	 LOGICAL	UPPER

	 DOUBLE		PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
			SNU, SNV

PURPOSE    [Toc]    [Back]

     DLAGS2 computes 2-by-2 orthogonal matrices	U, V and Q, such that if (
     UPPER ) then


ARGUMENTS    [Toc]    [Back]

     UPPER   (input) LOGICAL
	     = .TRUE.: the input matrices A and	B are upper triangular.
	     = .FALSE.:	the input matrices A and B are lower triangular.

     A1	     (input) DOUBLE PRECISION
	     A2	     (input) DOUBLE PRECISION A3      (input) DOUBLE PRECISION
	     On	entry, A1, A2 and A3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix A.

     B1	     (input) DOUBLE PRECISION
	     B2	     (input) DOUBLE PRECISION B3      (input) DOUBLE PRECISION
	     On	entry, B1, B2 and B3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix B.

     CSU     (output) DOUBLE PRECISION
	     SNU     (output) DOUBLE PRECISION The desired orthogonal matrix
	     U.

     CSV     (output) DOUBLE PRECISION
	     SNV     (output) DOUBLE PRECISION The desired orthogonal matrix
	     V.

     CSQ     (output) DOUBLE PRECISION
	     SNQ     (output) DOUBLE PRECISION The desired orthogonal matrix
	     Q.
DLAGS2(3F)							    DLAGS2(3F)


NAME    [Toc]    [Back]

     DLAGS2 - compute 2-by-2 orthogonal	matrices U, V and Q, such that if (
     UPPER ) then   U'*A*Q = U'*( A1 A2	)*Q = (	x 0 )  ( 0 A3 )	( x x )	and
     V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )	( 0 B3 ) ( x x )  or if	( .NOT.UPPER )
     then   U'*A*Q = U'*( A1 0 )*Q = ( x x )  (	A2 A3 )	( 0 x )	and  V'*B*Q =
     V'*( B1 0 )*Q = ( x x )  (	B2 B3 )	( 0 x )	 The rows of the transformed A
     and B are parallel, where	 U = ( CSU SNU ), V = (	CSV SNV	), Q = ( CSQ
     SNQ )  ( -SNU CSU ) ( -SNV	CSV ) (	-SNQ CSQ )  Z' denotes the transpose
     of	Z

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAGS2(	UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
			CSQ, SNQ )

	 LOGICAL	UPPER

	 DOUBLE		PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
			SNU, SNV

PURPOSE    [Toc]    [Back]

     DLAGS2 computes 2-by-2 orthogonal matrices	U, V and Q, such that if (
     UPPER ) then


ARGUMENTS    [Toc]    [Back]

     UPPER   (input) LOGICAL
	     = .TRUE.: the input matrices A and	B are upper triangular.
	     = .FALSE.:	the input matrices A and B are lower triangular.

     A1	     (input) DOUBLE PRECISION
	     A2	     (input) DOUBLE PRECISION A3      (input) DOUBLE PRECISION
	     On	entry, A1, A2 and A3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix A.

     B1	     (input) DOUBLE PRECISION
	     B2	     (input) DOUBLE PRECISION B3      (input) DOUBLE PRECISION
	     On	entry, B1, B2 and B3 are elements of the input 2-by-2 upper
	     (lower) triangular	matrix B.

     CSU     (output) DOUBLE PRECISION
	     SNU     (output) DOUBLE PRECISION The desired orthogonal matrix
	     U.

     CSV     (output) DOUBLE PRECISION
	     SNV     (output) DOUBLE PRECISION The desired orthogonal matrix
	     V.

     CSQ     (output) DOUBLE PRECISION
	     SNQ     (output) DOUBLE PRECISION The desired orthogonal matrix
	     Q.


									PPPPaaaaggggeeee 1111
[ Back ]
 Similar pages
Name OS Title
sgghrd IRIX reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal transformations, wh
dgghrd IRIX reduce a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal transformations, wh
zlags2 IRIX compute 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
clags2 IRIX compute 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0
chseqr IRIX compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z from the
zhseqr IRIX compute the eigenvalues of a complex upper Hessenberg matrix H, and, optionally, the matrices T and Z from the
dhseqr IRIX compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Sch
shseqr IRIX compute the eigenvalues of a real upper Hessenberg matrix H and, optionally, the matrices T and Z from the Sch
stzrqf IRIX reduce the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal tra
dtzrqf IRIX reduce the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal tra
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service