*nix Documentation Project
·  Home
 +   man pages
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

  man pages->IRIX man pages -> complib/dlag2 (3)              
Title
Content
Arch
Section
 

Contents


DLAG2(3F)							     DLAG2(3F)


NAME    [Toc]    [Back]

     DLAG2 - compute the eigenvalues of	a 2 x 2	generalized eigenvalue problem
     A - w B, with scaling as necessary	to avoid over-/underflow

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2, WI )

	 INTEGER       LDA, LDB

	 DOUBLE	       PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2

	 DOUBLE	       PRECISION A( LDA, * ), B( LDB, *	)

PURPOSE    [Toc]    [Back]

     DLAG2 computes the	eigenvalues of a 2 x 2 generalized eigenvalue problem
     A - w B, with scaling as necessary	to avoid over-/underflow.

     The scaling factor	"s" results in a modified eigenvalue equation

	 s A - w B

     where  s  is a non-negative scaling factor	chosen so that	w,  w B, and
     s A  do not overflow and, if possible, do not underflow, either.

ARGUMENTS    [Toc]    [Back]

     A	     (input) DOUBLE PRECISION array, dimension (LDA, 2)
	     On	entry, the 2 x 2 matrix	A.  It is assumed that its 1-norm is
	     less than 1/SAFMIN.  Entries less than sqrt(SAFMIN)*norm(A) are
	     subject to	being treated as zero.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= 2.

     B	     (input) DOUBLE PRECISION array, dimension (LDB, 2)
	     On	entry, the 2 x 2 upper triangular matrix B.  It	is assumed
	     that the one-norm of B is less than 1/SAFMIN.  The	diagonals
	     should be at least	sqrt(SAFMIN) times the largest element of B
	     (in absolute value); if a diagonal	is smaller than	that, then
	     +/- sqrt(SAFMIN) will be used instead of that diagonal.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= 2.

     SAFMIN  (input) DOUBLE PRECISION
	     The smallest positive number s.t. 1/SAFMIN	does not overflow.
	     (This should always be DLAMCH('S')	-- it is an argument in	order
	     to	avoid having to	call DLAMCH frequently.)

     SCALE1  (output) DOUBLE PRECISION
	     A scaling factor used to avoid over-/underflow in the eigenvalue
	     equation which defines the	first eigenvalue.  If the eigenvalues



									Page 1






DLAG2(3F)							     DLAG2(3F)



	     are complex, then the eigenvalues are ( WR1  +/-  WI i ) /	SCALE1
	     (which may	lie outside the	exponent range of the machine),
	     SCALE1=SCALE2, and	SCALE1 will always be positive.	 If the
	     eigenvalues are real, then	the first (real) eigenvalue is	WR1 /
	     SCALE1 , but this may overflow or underflow, and in fact, SCALE1
	     may be zero or less than the underflow threshhold if the exact
	     eigenvalue	is sufficiently	large.

     SCALE2  (output) DOUBLE PRECISION
	     A scaling factor used to avoid over-/underflow in the eigenvalue
	     equation which defines the	second eigenvalue.  If the eigenvalues
	     are complex, then SCALE2=SCALE1.  If the eigenvalues are real,
	     then the second (real) eigenvalue is WR2 /	SCALE2 , but this may
	     overflow or underflow, and	in fact, SCALE2	may be zero or less
	     than the underflow	threshhold if the exact	eigenvalue is
	     sufficiently large.

     WR1     (output) DOUBLE PRECISION
	     If	the eigenvalue is real,	then WR1 is SCALE1 times the
	     eigenvalue	closest	to the (2,2) element of	A B**(-1).  If the
	     eigenvalue	is complex, then WR1=WR2 is SCALE1 times the real part
	     of	the eigenvalues.

     WR2     (output) DOUBLE PRECISION
	     If	the eigenvalue is real,	then WR2 is SCALE2 times the other
	     eigenvalue.  If the eigenvalue is complex,	then WR1=WR2 is	SCALE1
	     times the real part of the	eigenvalues.

     WI	     (output) DOUBLE PRECISION
	     If	the eigenvalue is real,	then WI	is zero.  If the eigenvalue is
	     complex, then WI is SCALE1	times the imaginary part of the
	     eigenvalues.  WI will always be non-negative.
DLAG2(3F)							     DLAG2(3F)


NAME    [Toc]    [Back]

     DLAG2 - compute the eigenvalues of	a 2 x 2	generalized eigenvalue problem
     A - w B, with scaling as necessary	to avoid over-/underflow

SYNOPSIS    [Toc]    [Back]

     SUBROUTINE	DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2, WI )

	 INTEGER       LDA, LDB

	 DOUBLE	       PRECISION SAFMIN, SCALE1, SCALE2, WI, WR1, WR2

	 DOUBLE	       PRECISION A( LDA, * ), B( LDB, *	)

PURPOSE    [Toc]    [Back]

     DLAG2 computes the	eigenvalues of a 2 x 2 generalized eigenvalue problem
     A - w B, with scaling as necessary	to avoid over-/underflow.

     The scaling factor	"s" results in a modified eigenvalue equation

	 s A - w B

     where  s  is a non-negative scaling factor	chosen so that	w,  w B, and
     s A  do not overflow and, if possible, do not underflow, either.

ARGUMENTS    [Toc]    [Back]

     A	     (input) DOUBLE PRECISION array, dimension (LDA, 2)
	     On	entry, the 2 x 2 matrix	A.  It is assumed that its 1-norm is
	     less than 1/SAFMIN.  Entries less than sqrt(SAFMIN)*norm(A) are
	     subject to	being treated as zero.

     LDA     (input) INTEGER
	     The leading dimension of the array	A.  LDA	>= 2.

     B	     (input) DOUBLE PRECISION array, dimension (LDB, 2)
	     On	entry, the 2 x 2 upper triangular matrix B.  It	is assumed
	     that the one-norm of B is less than 1/SAFMIN.  The	diagonals
	     should be at least	sqrt(SAFMIN) times the largest element of B
	     (in absolute value); if a diagonal	is smaller than	that, then
	     +/- sqrt(SAFMIN) will be used instead of that diagonal.

     LDB     (input) INTEGER
	     The leading dimension of the array	B.  LDB	>= 2.

     SAFMIN  (input) DOUBLE PRECISION
	     The smallest positive number s.t. 1/SAFMIN	does not overflow.
	     (This should always be DLAMCH('S')	-- it is an argument in	order
	     to	avoid having to	call DLAMCH frequently.)

     SCALE1  (output) DOUBLE PRECISION
	     A scaling factor used to avoid over-/underflow in the eigenvalue
	     equation which defines the	first eigenvalue.  If the eigenvalues



									Page 1






DLAG2(3F)							     DLAG2(3F)



	     are complex, then the eigenvalues are ( WR1  +/-  WI i ) /	SCALE1
	     (which may	lie outside the	exponent range of the machine),
	     SCALE1=SCALE2, and	SCALE1 will always be positive.	 If the
	     eigenvalues are real, then	the first (real) eigenvalue is	WR1 /
	     SCALE1 , but this may overflow or underflow, and in fact, SCALE1
	     may be zero or less than the underflow threshhold if the exact
	     eigenvalue	is sufficiently	large.

     SCALE2  (output) DOUBLE PRECISION
	     A scaling factor used to avoid over-/underflow in the eigenvalue
	     equation which defines the	second eigenvalue.  If the eigenvalues
	     are complex, then SCALE2=SCALE1.  If the eigenvalues are real,
	     then the second (real) eigenvalue is WR2 /	SCALE2 , but this may
	     overflow or underflow, and	in fact, SCALE2	may be zero or less
	     than the underflow	threshhold if the exact	eigenvalue is
	     sufficiently large.

     WR1     (output) DOUBLE PRECISION
	     If	the eigenvalue is real,	then WR1 is SCALE1 times the
	     eigenvalue	closest	to the (2,2) element of	A B**(-1).  If the
	     eigenvalue	is complex, then WR1=WR2 is SCALE1 times the real part
	     of	the eigenvalues.

     WR2     (output) DOUBLE PRECISION
	     If	the eigenvalue is real,	then WR2 is SCALE2 times the other
	     eigenvalue.  If the eigenvalue is complex,	then WR1=WR2 is	SCALE1
	     times the real part of the	eigenvalues.

     WI	     (output) DOUBLE PRECISION
	     If	the eigenvalue is real,	then WI	is zero.  If the eigenvalue is
	     complex, then WI is SCALE1	times the imaginary part of the
	     eigenvalues.  WI will always be non-negative.


									PPPPaaaaggggeeee 2222
[ Back ]
 Similar pages
Name OS Title
preserve IRIX avoid freeing storage while it's being used
locale IRIX Perl pragma to use and avoid POSIX locales for built-in operations
slabad IRIX take as input the values computed by SLAMCH for underflow and overflow, and returns the square root of each of
dlabad IRIX take as input the values computed by SLAMCH for underflow and overflow, and returns the square root of each of
dlaln2 IRIX w D) X = s B with possible scaling ("s") and perturbation of A
slaln2 IRIX w D) X = s B with possible scaling ("s") and perturbation of A
glgetsharpentexfuncsgis IRIX get sharpen texture scaling function
gldetailtexfuncsgis IRIX specify detail texture scaling function
glsharpentexfuncsgis IRIX specify sharpen texture scaling function
glgetdetailtexfuncsgis IRIX get detail texture scaling function
Copyright © 2004-2005 DeniX Solutions SRL
newsletter delivery service