·  Home
+   man pages
 -> Linux -> FreeBSD -> OpenBSD -> NetBSD -> Tru64 Unix -> HP-UX 11i -> IRIX
·  Linux HOWTOs
·  FreeBSD Tips
·  *niX Forums

man pages->IRIX man pages -> complib/dorgql (3)
 Title
 Content
 Arch
 Section All Sections 1 - General Commands 2 - System Calls 3 - Subroutines 4 - Special Files 5 - File Formats 6 - Games 7 - Macros and Conventions 8 - Maintenance Commands 9 - Kernel Interface n - New Commands

### Contents

```
DORGQL(3F)							    DORGQL(3F)

```

### NAME[Toc][Back]

```     DORGQL - generate an M-by-N real matrix Q with orthonormal	columns,
```

### SYNOPSIS[Toc][Back]

```     SUBROUTINE	DORGQL(	M, N, K, A, LDA, TAU, WORK, LWORK, INFO	)

INTEGER	INFO, K, LDA, LWORK, M,	N

DOUBLE		PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
```

### PURPOSE[Toc][Back]

```     DORGQL generates an M-by-N	real matrix Q with orthonormal columns,	which
is	defined	as the last N columns of a product of K	elementary reflectors
of	order M

Q  =	 H(k) .	. . H(2) H(1)

as	returned by DGEQLF.

```

### ARGUMENTS[Toc][Back]

```     M	     (input) INTEGER
The number	of rows	of the matrix Q. M >= 0.

N	     (input) INTEGER
The number	of columns of the matrix Q. M >= N >= 0.

K	     (input) INTEGER
The number	of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.

A	     (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On	entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for	i = 1,2,...,k, as
returned by DGEQLF	in the last k columns of its array argument A.
On	exit, the M-by-N matrix	Q.

LDA     (input) INTEGER
The first dimension of the	array A. LDA >=	max(1,M).

TAU     (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary reflector
H(i), as returned by DGEQLF.

WORK    (workspace/output)	DOUBLE PRECISION array,	dimension (LWORK)
On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

LWORK   (input) INTEGER
The dimension of the array	WORK. LWORK >= max(1,N).  For optimum
performance LWORK >= N*NB,	where NB is the	optimal	blocksize.

Page 1

DORGQL(3F)							    DORGQL(3F)

INFO    (output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument has an illegal value
DORGQL(3F)							    DORGQL(3F)

```

### NAME[Toc][Back]

```     DORGQL - generate an M-by-N real matrix Q with orthonormal	columns,
```

### SYNOPSIS[Toc][Back]

```     SUBROUTINE	DORGQL(	M, N, K, A, LDA, TAU, WORK, LWORK, INFO	)

INTEGER	INFO, K, LDA, LWORK, M,	N

DOUBLE		PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
```

### PURPOSE[Toc][Back]

```     DORGQL generates an M-by-N	real matrix Q with orthonormal columns,	which
is	defined	as the last N columns of a product of K	elementary reflectors
of	order M

Q  =	 H(k) .	. . H(2) H(1)

as	returned by DGEQLF.

```

### ARGUMENTS[Toc][Back]

```     M	     (input) INTEGER
The number	of rows	of the matrix Q. M >= 0.

N	     (input) INTEGER
The number	of columns of the matrix Q. M >= N >= 0.

K	     (input) INTEGER
The number	of elementary reflectors whose product defines the
matrix Q. N >= K >= 0.

A	     (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On	entry, the (n-k+i)-th column must contain the vector which
defines the elementary reflector H(i), for	i = 1,2,...,k, as
returned by DGEQLF	in the last k columns of its array argument A.
On	exit, the M-by-N matrix	Q.

LDA     (input) INTEGER
The first dimension of the	array A. LDA >=	max(1,M).

TAU     (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary reflector
H(i), as returned by DGEQLF.

WORK    (workspace/output)	DOUBLE PRECISION array,	dimension (LWORK)
On	exit, if INFO =	0, WORK(1) returns the optimal LWORK.

LWORK   (input) INTEGER
The dimension of the array	WORK. LWORK >= max(1,N).  For optimum
performance LWORK >= N*NB,	where NB is the	optimal	blocksize.

Page 1

DORGQL(3F)							    DORGQL(3F)

INFO    (output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument has an illegal value

PPPPaaaaggggeeee 2222```
[ Back ]
Similar pages